Thomas Reh, PhD
ProfessorRetinal development and regeneration
The neural retina has served as a ideal region of the nervous system to identify the molecular mechanisms that control neurogenesis and cell fate. The five basic types of retinal neurons and the Muller glia are derived from progenitor cells that undergo multiple rounds of mitotic cell division during the embryonic and neonatal period in mice. The ease of isolation and the extensive markers available for characterization of the cells has allowed investigators to make great progress in the defining the functions of specific transcription factors and signaling molecules in controlling the cell fate determination and the regulation of neurogenesis.
Selected Publications:
- Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Müller Glial regenerative potential. Vandenbosch, L.V., Wohl, S.G, Wilken, M.S., Hooper, M.J., Finkbeiner, C., Cox, K., Chipman, L. Reh. T.A. Scientific Reports. 2020 Aug 12;10(1):13615. doi: 10.1038/s41598-020-70334-1.
- Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures. Sridhar A, Hoshino A, Finkbeiner CR, Chitsazan A, Dai L, Haugan AK, Eschenbacher KM, Jackson DL, Trapnell C, Bermingham-McDonogh O, Glass I, Reh TA. Cell Rep. 2020 Feb 4;30(5):1644-1659.e4. doi: 10.1016/j.celrep.2020.01.007. PMID: 32023475
- STAT Signaling Modifies Ascl1 Chromatin Binding and Limits Neural Regeneration from Muller Glia in Adult Mouse Retina. Jorstad NL, Wilken MS, Todd L, Finkbeiner C, Nakamura P, Radulovich N, Hooper MJ, Chitsazan A, Wilkerson BA, Rieke F, Reh TA. Cell Rep. 2020 Feb 18;30(7):2195-2208.e5. doi: 10.1016/j.celrep.2020.01.075. PMID: 32075759
- MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of Müller glia in mice.Wohl SG, Hooper MJ, Reh TA.Development. 2019 Aug 5. pii: dev.179556. doi: 10.1242/dev.179556. [Epub ahead of print]PMID: 31383796 [PubMed – as supplied by publisher]Similar articles
- Synchrony and asynchrony between an epigenetic clock and developmental timing. Hoshino A, Horvath S, Sridhar A, Chitsazan A, Reh TA.Sci Rep. 2019 Mar 6;9(1):3770. doi: 10.1038/s41598-019-39919-3.PMID: 30842553 [PubMed – in process] Free PMC Article Similar articles